AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Analysis II - Detailseite

Grunddaten
Veranstaltungsart Vorlesung Veranstaltungsnummer 331520250205
Semester SoSe 2025 SWS 4
Rhythmus jedes 2. Semester Moodle-Link  
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache deutsch
Weitere Links LV im Stundenplan des Instituts f. Physik
Belegungsfristen - Eine Belegung ist online erforderlich
Che/Phy    17.02.2025 - 01.05.2025    aktuell
Veranstaltungsformat Präsenz

Termine

Gruppe 1
Tag Zeit Rhythmus Dauer Raum Gebäude Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Di. 09:00 bis 11:00 wöch 15.04.2025 bis 13.07.2025  0110 (Hörsaal)
Stockwerk: EG


RudCh26-Modul 1 Erwin-Schrödinger-Zentrum - Rudower Chaussee 26 (RUD26)

Außenbereich nutzbar Innenbereich nutzbar Parkplatz vorhanden Leitsystem im Außenbereich Barrierearmes WC vorhanden Barrierearme Anreise mit ÖPNV möglich
Ortega Ortega findet statt     1000
Mi. 11:00 bis 13:00 wöch 16.04.2025 bis 14.07.2025  0.05 (Hörsaal)
Stockwerk: EG


alttext alttext
New14 Walther-Nernst-Haus (LCP) - Newtonstraße 14 (NEW14)

Außenbereich nutzbar Innenbereich eingeschränkt nutzbar Parkplatz vorhanden Leitsystem im Außenbereich Barrierearmes WC vorhanden Barrierearme Anreise mit ÖPNV möglich
Ortega Ortega findet statt     1000
Gruppe 1:

Studiengänge
Abschluss Studiengang LP Semester
Bachelor of Science  Physik Monobachelor ( Vertiefung: kein LA; POVersion: 2018 )     2 - 3 
Zuordnung zu Einrichtungen
Einrichtung
Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physik
Inhalt
Kommentar Voraussetzungen
Analysis I
Gliederung / Themen / Inhalte
1. Mehrdimensionale Konvergenz und Stetigkeit
1.1 Normen, Konvergenz von Folgen und Reihen
1.2 Offene Mengen, abgeschlossen Mengen und Rand
1.3 Konvergenz von Abbildungen
1.4 Iterierte Grenzwerte
1.5 Stetigen Abbildungen
1.6 Stetige Funktionen auf kompakten Mengen
1.7 Zusammenhang und Gebiete

2. Mehrdimensionale Differentialrechnung
2.1 Differenzierbar und Ableitung
2.2 Partielle Ableitungen und Jacobimatrix
2.3 Rechenregeln für differenzierbaren
2.4 Reellwertige Funktionen (Gradienten, Mittelwertsatz, höhere
Ableitungen)
2.5 Taylor-Formel
2.6 Lokale Extrema mit und ohne Nebenbedinungen

3. Mehrdimensionale Integralrechnung
3.1 Integrierbarkeit und Integral
3.2 Integrierbarkeit-Kriterien
3.3 Rechenregeln
3.4 Mehrfachintegrale und der Satz von Fubini
3.5 Transformationsformel
3.6 Uneigentliche mehrdimensionale Integrale
3.7 Kurvenintegrale. Gradientenfelder und ihre Potentiale
3.8 Flächenintegrale
3.9 Staz von Stokes. Satz von Gauß



Literatur Fischer, Helmut; Kaul, Helmut. Mathematik für Physiker, Band 1, 2001.
Hertel,Peter. Mathematikbuch zur Physik, 2009.
Kerner, Hans. Mathematik für Physiker, 2007.
Berendt, Gerhard. Mathematik für Physiker 1.
Jänich, Klaus. Mathematik 2, 2002.

Strukturbaum

Die Veranstaltung wurde 1 mal im Vorlesungsverzeichnis SoSe 2025 gefunden:

Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin