Studiengänge
Abschluss |
Studiengang |
LP |
Semester |
Master of Education (BS)
|
Informatik
2. Fach
(
Vertiefung: mit LA-Option;
POVersion:
2015
)
|
6 |
- |
Master of Education (GYM)
|
Informatik
2. Fach
(
Vertiefung: mit LA-Option;
POVersion:
2015
)
|
6 |
- |
Master of Education (ISG)
|
Informatik
1. Fach
(
Vertiefung: mit LA-Option;
POVersion:
2018
)
|
6 |
- |
Master of Education (ISG)
|
Informatik
2. Fach
(
Vertiefung: mit LA-Option;
POVersion:
2018
)
|
6 |
- |
Master of Science
|
Informatik
Hauptfach
(
Vertiefung: kein LA;
POVersion:
2015
)
|
6 |
- |
Master of Science
|
Wirtschaftsinformatik
Hauptfach
(
Vertiefung: kein LA;
POVersion:
2016
)
|
6 |
- |
Programmstudium-o.Abschl.
|
Chemie
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstudium-o.Abschl.
|
Geographie
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstudium-o.Abschl.
|
Informatik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstudium-o.Abschl.
|
Mathematik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstudium-o.Abschl.
|
Physik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Chemie
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Geographie
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Global Change Geography
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Informatik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Mathematik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Optical Sciences
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Physik
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Polymer Science
Programm
(
POVersion:
1999
)
|
6 |
- |
Programmstud.-o.Abschl.MA
|
Urbane Geographien
Programm
(
POVersion:
1999
)
|
6 |
- |
Inhalt
Kommentar |
The digitization of the processes of an organization has made available a vast amount of trace data about the execution of these processes, which allows for the use of data-driven process monitoring techniques such as process prediction. Business process prediction involves learning a predictor from data with the aim of forecasting specific details, such as the next activity to be executed, the time remaining for the completion of a process instance, or key process indicators, for an ongoing process instance. This course focuses on recent developments in business process prediction, covering or touching upon topics such as data pre-processing, machine learning, process mining, process monitoring, process prediction, and evaluation methodology. In a mixture of theoretical, and hands-on sessions, students will be able to gain a deeper understanding of the area of process prediction. |
Bemerkung |
This course will be given in English. |