AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Customer Analytics and Customer Insights - Detailseite

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung/Übung Veranstaltungsnummer 70710
Semester WiSe 2022/23 SWS 4
Rhythmus jedes 2. Semester Moodle-Link https://moodle.hu-berlin.de/course/view.php?id=114277
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache englisch
Belegungsfrist Es findet keine Online-Belegung über AGNES statt!
Veranstaltungsformat Blended Course

Termine

Gruppe 1
Tag Zeit Rhythmus Dauer Raum Gebäude Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Mi. 12:00 bis 14:00 wöch 22 (Seminarraum)
Stockwerk: EG


Spand1 Institutsgebäude - Spandauer Straße 1 (SPA 1)

Yegoryan findet statt    
Do. 12:00 bis 14:00 wöch 22 (Seminarraum)
Stockwerk: EG


Spand1 Institutsgebäude - Spandauer Straße 1 (SPA 1)

Sachse ,
Yegoryan
findet statt    
Gruppe 1:
 


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Sachse, Mareike
Yegoryan, Narine , Dr.
Studiengänge
Abschluss Studiengang LP Semester
Master of Education (BS)  Wirtschaftspädagogik (WV) 1. Fach ( Vertiefung: mit LA-Option; POVersion: 2015 )     -  
Master of Science  Betriebswirtschaftslehre Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Economics/ Management Sc. Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Volkswirtschaftslehre Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Wirtschaftsinformatik Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Programmstud.-o.Abschl.MA  Betriebswirtschaftslehre Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Statistik Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Volkswirtschaftslehre Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Wirtschaftsinformatik Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Wirtschaftspädagogik (WV) Programm ( POVersion: 1999 )     -  
Zuordnung zu Einrichtungen
Einrichtung
Wirtschaftswissenschaftliche Fakultät, Marketing
Inhalt
Kommentar

Marketing has evolved beyond being regarded mainly as art into a science. Today’s marketing requires using quantitative data to inform and make marketing decisions. While data is often readily available or economical to collect, firms often lack the necessary analytical and managerial expertise to use this data effectively.

In this course, we will study quantitative approaches to 1) understand and measure consumer perceptions and attitudes, 2) measure drivers of consumer decisions, including customer acquisition and retention, 3) measure consumer preferences and demand, 4) identify consumer segments, and 4) build and utilize models of consumer choice.

The course aims to provide students with the necessary expertise to implement and participate in customer analytics efforts in the workplace. Hence, we employ a hands-on approach: each topic consists of lectures introducing a specific method, a tutorial on the implementation of the method using the statistical program R, and a session focusing on particular applications in marketing. In exercises and assignments, students will work with data sets. The course sessions will be a mix of in-person lectures and video pre-recordings. Please note this is not a hybrid course; pre-recordings will only be provided for R tutorials, which complement not substitute the in-person lectures and exercises.

This course requires knowledge of fundamental ideas in statistics, econometrics, and consumer behavior or marketing management. We do not expect you to know already how to use R, but we do expect you to be willing to put in the effort to learn it.

More detailed information is provided in the course syllabus on the homepage of the Institute of Marketing at https://bit.ly/3w3wLl3. Note that the course is under continual development. The schedule may be adjusted as we go (except for assignment due dates).

Bemerkung

StO/PO MA 2016: 6 LP, Modul: Customer Analytics and Customer Insights"

StO/PO MEMS 2016: 6 LP, Modul: Customer Analytics and Customer Insights", Major: Quantitative Management Science

Prüfung

Portfolio exam: Students will work in four assignments during the semester: three assignments in group and one - individually. The final grade for the course will be calculated as the weighted average of the separate grades for each assignment. Each group will also present one of their assignments (ungraded). 

Exam registration via AGNES: from 26 October to 3 November 2022!

Strukturbaum

Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2022/23. Aktuelles Semester: SoSe 2025.
Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin