Kommentar |
- Mathematische Grundbegriffe: Menge der natürlichen Zahlen; Unendlichkeit; (Über)Abzählbarkeit; Prinzip der Diagonalisierung; kartesische Produkte; Relationen; Funktionen; rekursive Definitionen; Klärung der Begriffe „Definition“, „Satz“, „Lemma“, „Korollar“
- Mathematische Beweise verstehen und selbst formulieren: Aussagen und ihre Verknüpfungen; Beweistechniken (direkter Beweis, Beweis durch Kontraposition, Beweis durch Widerspruch, vollständige Induktion)
- Graphen und Bäume: Grundbegriffe (gerichtete und ungerichtete Variante; Wege; Kreise) und grundlegende Eigenschaften; Isomorphie; Zuordnungsprobleme und ihre Bedeutung für die Informatik (z.B. Modellierung von Problemen durch Matching- oder Färbungsprobleme); Grundbegriffe zu speziellen Graphen (z.B. vollständige Graphen; Binärbäume; bipartite Graphen; planare Graphen)
- Algebraische Strukturen: modulare Arithmetik; Grundbegriffe zu Gruppen, Körpern und Ringen; endliche Körper und Polynomringe und ihre Bedeutung in der Informatik, z. B. in der Codierungstheorie
- Kombinatorik: kombinatorische Abzählregeln; das Prinzip des doppelten Abzählens; Binomialkoeffizienten; Schubfachprinzip
- Diskrete Stochastik: Ereignisse und ihre Wahrscheinlichkeiten; diskrete Wahrscheinlichkeitsräume; Zufallsvariablen; Erwartungswert und Varianz; Markov-Ungleichung; Tschebyscheff-Ungleichung; Ausblick auf randomisierte Algorithmen und deren erwartete Laufzeit bzw. Erfolgswahrscheinlichkeit
|