AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Ausgewählte Themen der Stochastik (M27): Branching Provesses and Self-exciting Point Processes - Detailseite

  • Funktionen:
  • Online Belegung noch nicht möglich oder bereits abgeschlossen
Grunddaten
Veranstaltungsart Vorlesung Veranstaltungsnummer 3314517
Semester WiSe 2019/20 SWS 1
Rhythmus Moodle-Link  
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache englisch
Belegungsfrist - Eine Belegung ist online erforderlich
Veranstaltungsformat Präsenz

Termine

Gruppe 1
Tag Zeit Rhythmus Dauer Raum Gebäude Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Mi. 11:00 bis 13:00 wöch 3.008 (Seminarraum 20)
Stockwerk: EG


alttext alttext
RudCh25 Johann-von-Neumann-Haus - Rudower Chaussee 25 (RUD25)

Außenbereich nutzbar Innenbereich eingeschränkt nutzbar Parkplatz vorhanden Leitsystem im Außenbereich Barrierearmes WC vorhanden Barrierearme Anreise mit ÖPNV möglich
Xu findet statt     50
Gruppe 1:
Zur Zeit keine Belegung möglich


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Xu, Wei verantwortlich
Studiengänge
Abschluss Studiengang LP Semester
Master of Science  Mathematik Hauptfach ( POVersion: 2009 )   -  
Master of Science  Mathematik Hauptfach ( Vertiefung: kein LA; POVersion: 2014 )   -  
Zuordnung zu Einrichtungen
Einrichtung
Mathematisch-Naturwissenschaftliche Fakultät, Institut für Mathematik
Inhalt
Kommentar

Instructor: Dr. Wei Xu

Email: xuwei@math.hu-berlin.de

 

Content

This lecture gives a systematic introduction into the theory of branching particle systems and self-exciting point processes. This lecture consists of four parts. In the first part, we give an introduction on time-inhomogeneous random point processes, including Cox processes, cluster processes, self-exciting point processes and marked point processes. We not only study their basic properties but also explore their spectral representations and limit theorems. In the second part, we first introduce some elementary properties of continuous-time Galton-Watson branching processes including their generating function, criticality and asymptotic properties. Subsequently, we give a short but detailed introduction into the general theory of Non-Markovian branching processes including their generating functions and extinction properties. In the third part, we study marked point processes associated to the general branching processes. Conversely, for any self-exciting process we also give a cluster representation in term of some general branching process. Based on this one-to-one correspondence, we study the inner branching mechanism of self-exciting processes and its asymptotic properties via the theory of branching particle systems. Moreover, applying the convergence theorems of classic branching processes, we give several diffusion approximations for self-exciting processes including functional central limit theorems and scaling limit theorems. In the last part of this lecture, we offer a method to explore the general branching processes via the related self-exciting processes. We close with a brief overview on recent own research.

 

Prerequisites (1) Stochastics I and II

(2) Undergraduate Real Analysis and Measure Theory

(3) Some familiarity with stochastic integrals would be helpful

Literatur

Lecture notes will be available as the course progresses. Other good books can be referred.

Athreya, K.B. and Ney, P.E. (1972): Branching Processes. Springer, Berlin Jagers, P. (1975). Branching Processes with Biological Applications. John Wiley & Sons, London and New York.

Daley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point processes. Vol. I. Probability and its Applications. Springer Science & Business Media.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point processes: volume II: general theory and structure. Springer Science & Business Media.

Strukturbaum

Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2019/20. Aktuelles Semester: SoSe 2025.
Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin