AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Computational modelling of collective behaviour and cognition - Detailseite

Grunddaten
Veranstaltungsart Seminar Veranstaltungsnummer 32887
Semester WiSe 2024/25 SWS 2
Rhythmus keine Übernahme Moodle-Link  
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache englisch
Belegungsfristen - Eine Belegung ist online erforderlich Zentrale Abmeldefrist    01.07.2024 - 31.03.2025    aktuell
Mind and Brain Frist    06.07.2024 - 10.10.2024   
Veranstaltungsformat Präsenz

Termine

Gruppe 1
Tag Zeit Rhythmus Dauer Raum Gebäude Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Di. 16:15 bis 19:30 14tgl. 22.10.2024 bis 04.02.2025  BCCN-LH (Lecture Hall, Bernstein Center for Computational Neuroscience, Haus 6, Philippstraße 12)
Stockwerk:


externe Gebäude - außerhalb Humboldt-Universität (HU-EX)

  findet statt

On 19.11.24, 3.12.24, 4.2.25 different venue: Luisenstr. 56, room 220 (first floor)

  30
Gruppe 1:


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
Kurvers, Ralf , Dr.
Schakowski, Alexander
Sultan, Mubashir
Studiengänge
Abschluss Studiengang LP Semester
Master of Arts  Mind and Brain - Mind Hauptfach ( POVersion: 2013 )   -  
Master of Arts  Mind and Brain - Mind Hauptfach ( Vertiefung: kein LA; POVersion: 2015 )   -  
Master of Science  Mind and Brain - Brain Hauptfach ( POVersion: 2013 )   -  
Master of Science  Mind and Brain - Brain Hauptfach ( Vertiefung: kein LA; POVersion: 2015 )   -  
Zuordnung zu Einrichtungen
Einrichtung
Lebenswissenschaftliche Fakultät, Institut für Psychologie
Inhalt
Kommentar

This course will introduce students to computational models of collective behaviour and cognition. Such computational approaches can bridge the gap between the dynamics happening within and between agents in social groups, thereby mechanistically linking the individual and collective level. This ties together how (i) individual cognition drives social systems; (ii) the social environment drives individual cognition, and (iii) both levels interact. We will combine introductory lectures with practical hands-on sessions in R. We will start with a general introduction to computational models of cognition and typical Bayesian workflows including simulation, model fitting and parameter recovery. We then apply these methods to various computational models in social systems including models of (i) signal detection, (ii) evidence accumulation, and (iii) reinforcement learning. We will show how these approaches can help answer fundamental questions on social and collective decision making, such as when is it beneficial to learn from others (as opposed to on your own), and how do social learning strategies influence collective performance?

A basic understanding of programming is a requirement. The course will use coding exercises in the R environment, and a basic understanding of e.g. how to wrangle data in R, or another programming language, is required. By the end of the course, students are expected to have an overview over key concepts of Bayesian statistics and approaches to model decision making in social systems and will have developed step-by-step knowledge on the process of computational modelling of social systems.

Zielgruppe

Attendance is limited to 30 students. Please register for this course only if you seriously plan to take it.

Strukturbaum

Die Veranstaltung wurde 1 mal im Vorlesungsverzeichnis WiSe 2024/25 gefunden:

Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin