AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Advanced Remote Sensing Topics using R - Detailseite

  • Funktionen:
  • Online Belegung noch nicht möglich oder bereits abgeschlossen
Grunddaten
Veranstaltungsart Vertiefungsmodul Veranstaltungsnummer 3312038
Semester SoSe 2020 SWS 4
Rhythmus Moodle-Link  
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache englisch
Belegungsfrist - Eine Belegung ist online erforderlich Geographie: Geo-Frist    01.02.2020 - 17.04.2020   
Beschreibung :
Die Einschreibfrist hat sich verändert? -
Beachten Sie bitte, dass aufgrund der aktuellen Gefährdungssituation durch das Coronavirus der Beginn der Vorlesungszeit auf den 20.04. verschoben wurde. Bitte besuchen Sie regelmäßig die Website Ihrer Fakultät bzw. Ihres Institutes und natürlich AGNES, um das zusätzlich geschaffene digitale Lehrangebot nicht zu verpassen!
Veranstaltungsformat digital

Termine

Gruppe 1 iCalendar Export iCalendar Export
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer
iCalendar Export Mo. 09:00 bis 13:00 c.t. wöch 20.04.2020 bis 14.07.2020 
Einzeltermine anzeigen
Alfred Rühl-Haus - 1.231 Rudower Chaussee 16 (RUD16) - (Unterrichtsraum)   findet statt     16
Gruppe 1:
Zur Zeit keine Belegung möglich


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Pflugmacher, Dirk , Dr. verantwortlich
Studiengänge
Abschluss Studiengang LP Semester
Bachelor of Arts  Geographie Kernfach ( Vertiefung: mit LA-Option; POVersion: 2016 )     -  
Bachelor of Science  Geographie Kernfach ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Arts  Geographie Kernfach ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Science  Geographie Kernfach ( Vertiefung: mit LA-Option; POVersion: 2016 )     -  
Bachelor of Science  Geographie Kernfach ( Vertiefung: mit LA-Option; POVersion: 2018 )     -  
Bachelor of Science  Geographie Kernfach ( Vertiefung: mit LA-Option; POVersion: 2019 )     -  
Bachelor of Arts  Geographie Monobachelor ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Science  Geographie Monobachelor ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Science  Geographie Monobachelor ( Vertiefung: kein LA; POVersion: 2018 )     -  
Bachelor of Science  Geographie Monobachelor ( Vertiefung: kein LA; POVersion: 2019 )     -  
Bachelor of Science  Geographie Zweitfach ( Vertiefung: mit LA-Option; POVersion: 2016 )     -  
Bachelor of Arts  Geographie Zweitfach ( Vertiefung: mit LA-Option; POVersion: 2016 )     -  
Bachelor of Arts  Geographie Zweitfach ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Science  Geographie Zweitfach ( Vertiefung: kein LA; POVersion: 2016 )   10  3 -  
Bachelor of Science  Geographie Zweitfach ( Vertiefung: mit LA-Option; POVersion: 2018 )     -  
Bachelor of Science  Geographie Zweitfach ( Vertiefung: mit LA-Option; POVersion: 2019 )     -  
Zuordnung zu Einrichtungen
Einrichtungen
Mathematisch-Naturwissenschaftliche Fakultät, Geographisches Institut
Mathematisch-Naturwissenschaftliche Fakultät, Geographisches Institut, Abteilung Geomatik (Fachgebiete / Professuren)
Inhalt
Kommentar

(This module targets BSc students aiming for deeper knowledge of remote sensing and an entry into applied R programming. Students are expected to have successfully completed BSc modules 3 (statistics) and 6 (GIS) as well as module 7 "Introduction to remote sensing" or equivalent.)

 

The monitoring and mapping of vegetation and land cover is one of the key activities in Earth observation (EO). Advanced EO products are pivotal for many geographic and environmental studies. In this module students learn concepts and techniques for analyzing and mapping (vegetated) land cover and its characteristics at various spatial scales and with different sensor systems. Data analysis is fully done in R and students learn to create customized R-scripts along a series of processing tasks throughout the semester.

The advanced remote sensing topics module is designed for advanced BSc students who want to deepen and extend their remote sensing skills with regard to theory and application (e.g. to pursue a BSc thesis related to remote sensing or as preparation for MSc studies) as well as to gain problem-driven knowledge in R programming. Participants must have successfully completed Module 6 “Introduction to Geoinformation Science” and Module 7 “Introduction to Remote Sensing” or present equal experience.

The module is fully taught in English language and includes reading of English original articles. Student presentations and written reports may be held in English or German. International students with relevant experience are welcome.



Registering for the course

Students are asked to register online for the course and come to the first seminar session in week 1 of the summer term. Students who do not come to the first session must contact the lecturers prior to the session!

 

The module is organized in two parallel sections: in the first part students gain deeper knowledge on the theory of (vegetation) remote sensing, learn about in-situ techniques, common imaging sensors and advanced analysis methodology from original literature; theory is deepened and exemplified along small exercises. The second part introduces students to script programming in the R language and teaches students how to develop analysis frameworks for digital image analysis.

Four selected topics will be explored in detail by students. Each topic involves reading of original literature, new methodologies and data sets, as well as implementation of these methodologies in R. The topics will include:

1) Vegetation characteristics with field and laboratory measurements

2) Quantitative mapping of impervious urban land cover

3) Mapping land cover from multi-seasonal data

4) Mapping biomass from multispectral satellite data and lidar data 

Each of the topics is covered in three seminar sessions and three related weekly assignments including i) literature work, ii) programming, iii) documentation.

 

Literatur

Relevant literature will be announced during the seminar. The seminar includes readings of at least four original articles which are distributed online through Moodle. Each student will summarize these articles and present one of them.

Prüfung

The MAP consists of a report covering the four advanced topics of the course. For each topic students will provide a summarizing report of the data analysis, the related program code, and the gained theoretical knowledge.

Strukturbaum

Die Veranstaltung wurde 8 mal im Vorlesungsverzeichnis SoSe 2020 gefunden:

Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin